REAKTIONEN VON TRICARBONYL-CHROM-η⁶λ³-PHOSPHORIN-KOMPLEXEN ZU TRICARBONYL-CHROM-η⁶λ⁵-PHOSPHORIN-YLID-KOMPLEXEN *

K. DIMROTH* und H. KALETSCH

Fachbereich Chemie der Universität Marburg, D-3550 Marburg, Hans-Meerwein-Strasse (Deutschland) (Eingegangen den 3. November 1982)

Summary

The tricarbonylchromium $\eta^6 \pi^6$ complexes of 2,4,6-triphenyl- and 2,4,6-tri-t-butyl- λ^3 -phosphorins **3a** and **3b** add nucleophiles regio- and stereo-specifically to the phosphorus atom in the *exo*-position giving the λ^4 -phosphorin anions which now add electrophiles in the *endo* position, giving $\eta^5 \pi^6 - \lambda^5$ -phosphorin ylide complexes **5a** and **5b**, respectively. The ¹H, ¹³C and ³¹P NMR spectra of **3a** and **3b** and especially **5a** and **5b** are discussed with respect to the stereoisomeric complexes **5a** having two different exocyclic substituents at the phosphorus atom, synthezised from e.g. 1-ethyl-1-methyl-2,4,6-triphenyl- λ^5 -phosphorin and Cr(CO)₆. The tricarbonylchromium-1,1-dialkyl or alkyl-aryl-2,4,6-tri-t-butyl- λ^3 -phosphorin **5b** can only be synthezised from tricarbonylchromium-2,4,6-tri-t-butyl- λ^3 -phosphorin by addition of nucleophiles and electrophiles since the corresponding λ^5 -phosphorin derivatives are not available. By removal of the tricarbonylchromium residue from the λ^5 -phosphorin-ylide complexes **5b**, however, also 2,4,6-tri-t-butyl- λ^5 -phosphorins can be prepared.

Zusammenfassung

Die Tricarbonylchrom-2,4,6,-triphenyl- und -2,4,6-tri-t-butyl- λ^3 -phosphorine 3a bzw. 3b addieren Nucleophile regio- und stereospezifisch an das Phosphoratom in die *exo*-Position zu λ^4 -Phosphorin-Anionen und danach Elektrophile in die *endo*-Position zu den $\eta^5 \pi^6 - \lambda^5$ -Phosphorin-Ylid-Komplexen 5a bzw. 5b. Die ¹H-, ¹³C- und ³¹P-NMR-Spektren von 3a und 3b und insbesondere 5a und 5b werden diskutiert,

^{*} Ein Teil dieser Arbeit wurde am 4.12.1980 zum 80. Geburtstag von Prof. Dr. Tadeusz Urbanski an die Redaktion des Polish Journal of Chemistry gesandt, wo sie im Heft 6, 1981 erscheinen sollte, was jedoch aus äusseren Gründen nicht möglich war. Die Autoren haben sie daher zurückgezogen und veröffentlichen sie jetzt in erweiterter Form, dem 80. Geburtstag von Prof. Urbanski gewidmet, in dieser Zeitschrift.

und mit den bekannten stereoisomeren Komplexen **5a** mit verschiedenen exocyclischen Substituenten am Phosphoratom verglichen, z.B. dem Tricarbonylchroml-(*exo*)-ethyl-1-(*endo*)-methyl-2,4,6-triphenyl- λ^5 -phosphorin, das aus l-Ethyl-1methyl-2,4,6-triphenyl- λ^5 -phosphorin mit Cr(CO)₆ entsteht. Die Tricarbonylchroml,1-dialkyl- oder -1-alkyl-1-aryl-2,4,6-tri-t-butyl- λ^5 -phosphorin-ylid-Komplexe **5b** kann man nur ausgehend von Tricarbonylchrom-2,4,6-tri-t-butyl- λ^3 -phosphorin durch Addition von Nucleophilen und Elektrophilen synthetisieren, da die 2,4,6-t-Butyl- λ^5 -phosphorine bisher nicht synthetisiert werden konnten. Durch Abspaltung der Tricarbonylchrom-Schutzgruppe aus **5b** sind sie jedoch jetzt zugänglich.

Einleitung

Deberitz und Nöth [1] haben die ersten Tricarbonyl-Übergangsmetall-Komplexe mit Chrom, Molybdän und Wolfram von 2,4,6-Triphenyl- λ^3 -phosphorin dargestellt. Nach den Röntgenstrukturanalysen von Vahrenkamp und Nöth [2] handelt es sich um typische $\eta^6 \pi^6$ -Heteroaromatenkomplexe mit ebenem Phosphorinring. Im Kristall liegt das Übergangsmetall nahezu über der Mitte des Ringes und die daran gebundenen CO-Gruppen auf Lücke über den Bindungen P-C(2), C(3)-C(4) und C(5)-C(6). Die Feststellung, dass nur der Phosphorinring und nicht die Phenylsubstituenten komplexiert werden, zeigt, dass der heteroaromatische Ring der elektronenreichste Ring ist. Im Gegensatz hierzu werden beim 2,4,6-Triphenylpyridin nur die Phenyl-Substituenten, nicht jedoch der elektronenärmere Pyridinring, komplexiert [3]. Im 1,3,5-Triphenylbenzol reagieren sowohl die substituierenden Phenylringe als auch der zentrale Phenylring unter Cr(CO)₃-Komplexbildung [4].

Mit keinem dieser Tricarbonyl-Metall-Komplexe sind bisher chemische Umsetzungen durchgeführt worden. Im Zusammenhang mit neuartigen Tricarbonylchrom- λ^5 -phosphorinkomplexen 2, die wir durch Umsetzung von Chrom-trisacetonitril-tricarbonyl oder Chromhexacarbonyl mit λ^5 -Phosphorinen 1 darstellen konnten [5], haben wir nun auch die Reaktivität der Tricarbonyl- λ^3 -phosphorine 3a und 3b untersucht, worüber in dieser Arbeit berichtet wird.

Aufgrund der ¹H-, ¹³C- und ³¹P-NMR-Spektren müssen die Tricarbonylchrom- λ^5 -phosphorinkomplexe 2 als λ^5 -Phosphorin-Ylid-Derivate angesehen werden, bei denen die positive Ladung je nach der Natur der exocyclischen Phosphor-Substituenten X und Y mehr oder weniger auf das Phosphoratom konzentriert ist, während die negative Ladung auf die fünf Ring-C-Atome, möglicherweise bis zum $Cr(CO)_3$ hin, delokalisiert ist [6,7]. Diese Auffassung wird auch durch die Ergebnisse der Röntgenstrukturanalysen von fünf Tricarbonylchrom- λ^5 -4(R)-2,6-diphenylphosphorinen mit verschiedenen R an C(4) und X,Y-Substituenten am Phosphoratom durch Debaerdemaker [8] bestätigt. Der Phosphorinring ist im Gegensatz zu den λ^3 -Phosphorin-Komplexen nicht mehr eben, sondern bildet eine Wanne, bei der die C-Atome 2, 3, 5 und 6 eine Ebene bilden, von der das C-Atom 4 weniger, und der PXY Rest stärker vom auf der Unterseite befindlichen Cr(CO)3-Rest nach oben abgewinkelt sind. Das Cr-Atom ist in Richtung auf C(4) aus der Mitte des Ringes verschoben und die drei CO-Gruppen liegen nun fast ekliptisch über dem PXY-Rest und den C-Atomen 3 und 5. Wesentlich ist auch, dass stets der mehr Raum beanspruchende Rest Y bei der Komplexierung der λ^5 -Phosphorine 1 zu 2 in die exo-Stellung gelangt.

Tricarbonyl-2,4,6-triphenyl- und 2,4,6-tri-t-butyl- λ^3 -phosphorin-Komplexe

Tricarbonyl-Übergangsmetall-Komplexe des Chroms von Arenen haben sich in den letzten Jahren als ausserordentlich nützliche Zwischenprodukte erwiesen, um Arene durch Nucleophile zu substituieren [9]. Bei substituierten Arenen entsteht allerdings mit wenigen Ausnahmen [10] meist ein Gemisch der regioisomeren Substitutionsprodukte. Auch verläuft die Addition des Nucleophils an die Komplexe zu dem angenommenen Cyclohexadienyl- $\eta^5 \pi^6$ -tricarbonylchrom-Komplex mit einem sp^3 -C-Atom manchmal reversibel, so dass die nachfolgende Abspaltung des Hydrid-(oder Halogen-)Ions vom sp^3 -C-Atom wie auch die der Tricarbonylmetall-Schutzgruppe Schwierigkeiten bereiten kann, um das nucleophil substituierte Aren zu erhalten.

Im Gegensatz hierzu addieren die Tricarbonylchromkomplexe von 2,4,6-trisubstituierten λ^3 -Phosphorinen **3a** oder **3b** Nucleophile (Nu), wie Alkyl-, Aryl- oder Alkoxyl-Anionen ausschliesslich an das Phosphoratom zu spektroskopisch nachweisbaren λ^4 -Phosphorin-1-Nu(*exo*)-Anion-Komplexen **4a** oder **4b**. Diese addieren nachfolgend Elektrophile, wie Methyl- oder Ethyl-Kationen aus den entsprechenden Alkylhalogeniden, sowie auch H⁺-Ionen, zu den Tricarbonylchrom- λ^5 phosphor-Ylid-Komplexen **5a** bzw. **5b**. Das Nucleophil wird, unabhängig von seiner Raumerfüllung stets in *exo*-Stellung (und danach das Elektrophil in *endo*-Stellung) addiert. Man kann daher, je nach der Wahl von Nucleophil und Elektrophil, die am Phosphoratom stereoisomeren Komplexe herstellen, von denen einige, und zwar entweder die mit gleichen exocyclischen Resten oder die mit dem grösseren exocyclischen Rest, in der 2,4,6-Triphenyl- λ^5 -phosphorin-Reihe bereits auf dem beschriebenen Wege, durch Umsetzung der λ^5 -Phosphorine mit Cr(CO)₆, bekannt waren.

Zur Herstellung der Tricarbonylchrom-2,4,6-triphenyl-bzw. 2,4,6-tri-t-butyl- λ^3 -phos-phorine **3a** bzw. **3b**

Bei der Nacharbeitung der Versuche von Deberitz und Nöth [1] zur Herstellung von **3a**, fanden wir, dass aus 2,4,6-Triphenyl- λ^3 -phosphorin mit Cr(CO)₆ in Dibutylether neben dem beschriebenen Komplex **3a** in geringer Menge (10-20%) auch ein

TABELLE 1

Verbin-	¹ H-NMR			¹³ C-NMI	ર		
	δ an C(3/5) (³ J(P-H))	$\delta(CH_3-t-Bu)$ an C(2/6)) (⁴ J(P-H))	δ(CH ₃ -t-Bu an C(4)) (⁶ J(P-H))	¹ J(С-Н)	δ(C(2/6)) (¹ J(P-C))	δ(C(3/5)) (² J(P-C))	
3a	6	-	_	156.1	122.4	96.6	
•	(4.5)	-	-	-	(65.9)	(6.4)	
3b	5.9	1.2	1.4	161.9	129.6	97.1	
	(6)	(2)	(0)	-	(69.5)	(5.7)	

SPEKTROSKOPISCHE DATEN VON TRICARBONYLCHROM-2,4,6-TRIPHENYL- UND -2,4,6-TRI-t-BUTYL- λ^3 -PHOSPHORIN 3a UND 3b "

" δ -Werte in ppm (TMS als standard bei ¹H- und ¹³C-NMR, 85% H₃PO₄ bei ³¹P-NMR); in Klammern Kopplungskonstanten in Hz.^b In Cyclohexan.^c In KBr.

zweifach durch Tricarbonylchromgruppen besetzter Komplex 3a' entsteht, den wir chromatographisch nicht analysenrein abtrennen konnten. Aufgrund der ¹H- und ¹³C-NMR-Spektren ist bei 3a' neben dem Phosphorin noch zusätzlich einer der in 2bzw. 6-Stellung befindlichen Phenylreste mit Cr(CO)₃ komplexiert worden. Im Gegensatz zu diesen Komplexen gelang es uns jedoch nach der Umsetzung des

TABELLE 2

¹H-, ¹³C- UND ³¹P-NMR-SPEKTREN DER 1,1-DISUBSTITUIERTEN TRICARBONYLCHROM-2,4,6-TRIPHENYL- λ^5 -PHOSPHORINE **5a** ^a

Nr.	Nu(exo)	E(endo)	¹ H-NMR			¹³ C-NMR	
			δ(an C(3/5)) (³ J(P-H))	δ(an Nu) (J(P–H))	δ(an E) (J(P-H))	δ(C(2/6)) (¹ J(P-H))	$\delta(C(3/5))$ (² J(P-C))
1	CH,	СН3	6.15	1.33	2.07	47.6	102.6
			(20)	(12)	(12)	(85.1)	(6.4)
2	CH,	CD3	6.15	1.33	-	47.5	102.6
			(20)	(12)		(83.9)	(5.9)
3	СН,	C₂H,	5.97	1.3	2.65 0.65	48.1	102.7
			(19)	(11)	(15) (20)	(81.3)	(5.6)
4	C ₂ H ₅	CH ₃	6.05	1.45 1.05	1.92	46.0	103.5
		2	(20)	(-) (18)	(12.5)	(80.6)	(5.6)
5	C ₆ H,	CH ₁	6.12	Im Aromaten-	2.74	51.5	102.7
	•••	-	(20)	bereich	(12)	(82.9)	(5.6)
6	OCH ₃	CH ₃	6.1	3.24	2.0	61.5	104.3
	-	-	(20)	(12)	(14)	(94.1)	(4.8)
7	CH,	н	6.26	1.32	9.1	_	-
	-		(20)	(12)	(517)		

^α δ-Werte in ppm (TMS als Standard bei ¹H- und ¹³C-NMR, 85% H₃PO₄ bei ³¹P-NMR); in Klammern Kopplungskonstanten in Hz.

				³¹ P-NMR	IR "(CO) f	MS	UV [*]
δ(C(4)) (³ J(P-C))	δ(CO)	δ(C(2/6)) quart.	δ(C(4)) quart.		(cm^{-1})	m / e	nn (e)
					1907	460(30)	402 (32200)
108.2	232.2	_	-	4.3	1915	404(35)	291 (10900)
(5.4)	-	_	-		1976	476(35)	
						324(100)	
					1870	400(10)	332 (4500)
115.3	232.4	37.5	35.3	23	1885	316(100)	212 (18000)
(3.8)	-	(19)	(0)		1940		

Gemisches aus 3a und 3a' mit Nucleophilen und Elektrophilen die nur im Phosphorinring sowie die zusätzlich im 2-Phenylring mit $Cr(CO)_3$ komplexierten λ^5 -Phosphorin-Ylid-Komplexe analysenrein zu gewinnen.

Ausserordentlich glatt und nahezu quantitativ verläuft die Umsetzung von 2,4,6-Tri-t-butyl- λ^3 -phosphorin [11] zu dem bisher unbekannten Tricarbonylchrom-Kom-

					³¹ P-NMR	
$\delta(C(4))$ (³ J(P-C))	δ(Nu(<i>exo</i>)) (J(P-C))	δ(E(endo)) (J(P-C))	δ(CO)	¹ J(C-H) (an C(3))		
99.0	22.9	11.0	235.5	170.0	4.5	
(12.9)	(22.5)	(78.7)				
99.1	22.8	-	-		4.5	
(12.8)	(22.9)	-				
98.8	18.8	17.3 7.3			9	
(11.5)	(21.9)	(51.8) (4)				
98.7	30.6 7.2	10.3	235.3	167.5	1.3	
(10.3)	(29.7) (2.4)	(74.4)				
99.3	Im Aromaten-	8.6			0	
(10.9)	bereich	(82.3)				
96.8	52.4	10.5	_		18	
(11.8)	()	(112)				
_	-	_	-		- 24	

plex 3b. Die grössere Elektronendichte des Phosphorinringes im Vergleich zu 3a geht aus den in Tab. 1 aufgeführten NMR-Daten, insbesondere auch aus den bei niedrigeren Frequenzen liegenden CO-Gruppen hervor. Die UV-Spektren beider Komplexe zeigen auch, dass die Phenylgruppen bei 3a zur Delokalisierung der Elektronen einen Beitrag leisten, was auch aus der Farbigkeit der λ^4 -Phosphorin-Anionen 4a hervorgeht. 3b und die λ^4 -Phosphorin-Anionen des Tricarbonylchrom-Komplexes des 2,4,6-Tri-t-butylphosphorins sind dagegen fast farblos. Der leichteren Bildung des Tricarbonylchrom-Komplexes von 3b entspricht auch die schwierigere Entfernung der Tricarbonylchromgruppe insbesondere aus dem λ^5 -Komplex 5b (siehe unten).

Reaktionen des Tricarbonylchrom-2,4,6-triphenyl- λ^3 -phosphorins **3a**

Bei der Addition von LiMe an 3a in THF entsteht zunächst ein tiefrotes Lithiumsalz 4a (Nu = Me). Bei der Zugabe von IMe färbt sich die Lösung (THF) orangegelb und man erhält den bereits bekannten [5] Tricarbonylchrom-1,1-dimethyl-2,4,6-triphenyl- λ^5 -phosphorinkomplex 5a (Nu = E = Me) (Tab. 2, Nr. 1), Die schon in der früheren Arbeit getroffene Zuordnung für die exo- und endo-ständige Methylgruppe [6] aufgrund ihrer ¹H- und ¹³C-NMR-Spektren liess sich leicht bestätigen, als wir die elektrophile Komponente ICH₃ durch ICD₃ ersetzten. Die ¹H-Signale der *endo*-Me-Gruppe treten im ¹H-NMR-Spektrum nicht mehr auf, aber auch das ¹³C-Signal der endo-Methylgruppe wird wegen der Kopplung mit dem Phosphor und den D-Atomen und den dadurch verursachten grösseren Relaxationszeiten nicht mehr gefunden. Die chemische Verschiebung der Protonen der exo-Methylgruppe liegt bei höherem Feld als die der endo-Methylgruppe, die ²J(P-H)-Kopplungskonstanten der beiden Methylgruppen sind nahezu gleich. Der ¹³C-δ-Wert der *exo*-Methylgruppe liegt bei tieferem Feld mit einer erheblich kleineren ¹J(P-C)-Kopplungskonstanten im Vergleich zu derjenigen der Verbindung mit der endo-Methylgruppe. Einen weiteren Vergleich bieten die Beispiele Nr. 3 und 4 der Tabelle 2. Nr. 3 entsteht durch Einwirken von LiMe und dann BrEt auf 3a, Nr. 4 dagegen aus 3a durch LiEt und IMe. Letztere Verbindung ist identisch mit dem bereits beschriebenen Tricarbonylchrom-1-ethyl-1-methyl-2,4,6-triphenyl- λ^5 -phosphorin, das nach der in den Formeln $1a \rightarrow 2a$ aufgezeigten Methode aus 1-Ethyl-1methyl-2,4,6-triphenyl- λ^5 -phosphorin und Cr(CO)₆ entsteht. Ähnliches gilt auch für die Verbindungen Nr. 5 und 6.

Von besonderem Interesse ist die Darstellung von bisher nicht bekannten am Phosphoratom protonierten Tricarbonylchrom- λ^5 -phosphorin-Komplexen. Während nach Addition von Natriummethylat an **3a** schon verdünnte Essigsäure wieder MeOH vom Phosphor abspaltet und **3a** zurückliefert, kann der 1-(*exo*)-Me-1-(*endo*)-H-Komplex (Tab. 2, Nr. 7) durch sein ¹H- und ³¹P-NMR-Spektrum nachgewiesen werden. Die Verbindung ist jedoch nur kurze Zeit beständig. Eine Addition eines Hydridions an **3a** (und **3b**) in *exo*-Stellung ist uns bisher in keinem Fall gelungen.

Reaktionen des Tricarbonylchrom-2,4,6-tri-t-butyl- λ^3 -phosphorins 3b

Die Umsetzungen mit Nucleophilen und Elektrophilen des λ^3 -Phosphorin-Komplexes **3b** verlaufen im Prinzip analog wie bei **3a**. Auch hier liess sich durch ICD₃ anstelle von ICH₃ an die LiMe-Additionsverbindung die *exo*- und *endo*-Zuordnung der beiden exocyclischen Methylgruppen (Nr. 2 der Tab. 3) im λ^5 -Phosphorinkomplex **5b** sichern. Die chemischen Verschiebungen der Protonen und ¹³C-Atome und die ²J(P-H) und ¹J(P-H)-Kopplungskonstanten der Substituenten für die *exo*- und *endo*-Reste am Phosphoratom sind in allen Fällen denen der 2,4,6-Triphenyl- λ^5 phosphorin-Derivaten der Tab. 2 analog. Da bei der nach Märkl, Lieb und Merz [12] gefundenen Reaktion, der Addition von Nucleophilen und danach Elektrophilen an λ^3 -Phosphorine zu λ^5 -Phosphorinen, bei 2,4,6-Tri-alkyl- λ^3 -phosphorinen, und wie wir gefunden haben, auch beim 2,4,6-Tri-t-butyl- λ^3 -phosphorin, das Elektrophil nicht an das Phosphoratom sondern an C(2) addiert wird, so dass z.B. aus **3b** 1,2-Dihydro-1-(Nu), 2-(E)-2,4,6-tri-t-butyl-phosphorine entstehen [12], sind hier die 1,1-substituierten λ^5 -Phosphorine nicht bekannt. Lediglich 1,1-Dialkoxy- oder 1,1-Diphenoxy-2,4,6-tri-t-butyl- λ^5 -phosphorine lassen sich unmittelbar aus 2,4,6-Tri-t-butyl- λ^3 -phosphorin nach der Quecksilber(II)-acetat-Methode [13] darstellen. Die Tricarbonylchrom-Komplexe, wie Nr. 8 der Tab. 3, bilden sich leicht mit Cr(CO)₆. In dieser Reihe ist auch der 1-(*exo*)-Methyl-1(*endo*)-hydro-Komplex (Nr. 7, Tab. 3) so beständig, dass er als kristallisierte Verbindung analysiert werden kann.

Abspaltung der Cr(CO)₃-Gruppe aus den λ^5 -Phosphorin-Komplexen 5a und 5b

Durch Erhitzen mit Pyridin lässt sich aus den Tricarbonylchrom-2,4,6-triphenyl- λ^5 -phosphorinen **5a** der Tab. 2 der Cr(CO)₃-Rest wieder leicht abspalten und die 2,4,6-Triphenyl- λ^5 -phosphorin-Derivate isolieren.

Bei den Tricarbonylchrom-2,4,6-tri-butyl- λ^5 -phosphorinen 5b der Tab. 3 versagten jedoch alle gebräuchlichen Methoden [14] der Dekomplexierung. Durch kurzes Behandeln mit 70 proz. Perchlorsäure erhielten wir jedoch das 2,4,6-Tri-t-butyl-1,1dimethyl-1,2-dihydro-phosphorin-perchlorat. Offenbar aus sterischen Gründen wird es nur schwierig deprotoniert, da weder mit Pyridin noch mit Lithiumbutyl eine Umsetzung eintrat. Beim Behandeln mit NaOH entstehen neben dem 1,1-Dimethyl- λ^{5} -phosphorin-Derivat noch zwei weitere Produkte, möglicherweise durch Methylwanderung an C(2) und C(4). Zur Deprotonierung hat sich jedoch Natriumhydrid in THF gut bewährt. Auf diese Weise erhält man das empfindliche 2,4,6-Tri-t-butyl-1,1-dimethyl- λ^5 -phosphorin. In ähnlicher Weise verläuft auch die Reaktion mit dem Tricarbonylchrom-1-(*endo*)-ethyl-1-(*exo*)-methyl-2,4,6-tri-t-butyl- λ^{5} -phosphorin (Nr. 3 der Tab. 3), das wir nach der HClO₄-Dekomplexierung und Behandlung mit NaOH sofort wieder mit Cr(CO)₆ in Dibutyl-ether umgesetzt haben. Hierbei erhielten wir erwartungsgemäss das am P-Atom stereoisomere Tricarbonylchrom-1-(exo)ethyl-1-(*endo*)-methyl-2,4,6-tri-t-butyl- λ^5 -phosphorin, das mit Nr. 4 der Tab. 3 identisch ist.

Versuche, aus dem 2,4,6-Tri-t-butyl-1,2-dimethyl-1,2-dihydrophosphorin 7 durch Umlagerung einer Methylgruppe von C(2) an das P-Atom den 1,1-Dimethyl- λ^5 -phosphorin-Komplex 5b beim Erhitzen mit Cr(CO)₆ in Dibutylether zu erhalten, führten

(Fortsetzung s. S. 280)

¹ H-, ¹³ C- und ³	¹¹ P-NMR-SPEK1	FREN DER 1,1-D	ISUBSTITUIERTE	N TRICARBONYLC	CHROM-2,4,6-TRI-t-B	UTYL-X5-PHOSPHOR	INE Sb
Nr.	Nu (<i>exo</i>)	E(endo)	¹ H-NMR				
			&(C(3/5)) (³ J(P–H))	8(CH ₃ -t-Bu) an C(2/6) (⁴ J(P-H))	8(CH ₃ -t-Bu) an C(4) (⁶ J(P–H))	ð(an Nu) (<i>J</i> (P–H))	&(an E) J(P–H))
1	СН3	CH3	5.5	1.1	1.3	0.92	2.36
2	сн,	Ģ	(20) 5.5	(-) I.1	(-) £.1	(11) 0.92	(13) -
)		(20)	(-)	Ĵ	(11)	
ñ	CH ₃	C ₂ H,	5.6 (20)	1.2	1.4	1.98	3.14 1.5
4	C ₂ H ₅	CH ₃	5.62	1.2	(-) 1.3	0.45-1.07	2.4
			(21)	(-)	(-)	(2) (1)	(13)
5	с _к н,	CH,	5.7	1.3	1.4	im Aro-	2.86
			(21)	(-)	(-)	maten-	(13)
						bereich	
6	oCH ₃	СН,	5.84	1.3	1.4	2.9	2.5
			(22)	(-)	(-)	(12)	(15)
7	CH3	Н	5.5	1.1	1.26	1.3	<i>T.T</i>
			(22)	(-)	.	(12)	(518)
8 °	ocH ₃	0CH ₃	5.7	1.3	1.4	3.1 a	3.9 a
			(30)	(-)	(-)	(12,5)	(11)

TABELLE 3

8(C(2/6)) (¹ J(P-C))	8(C(3/5)) (² J(P-C))	8(C(4)) (³ J(P-C))	8(C quart) C(2/6) (² J(P-C))	8(C quart) an C(4) (⁵ J(P-C))	8(C-Nu(<i>exo</i>)) (J(P-C))	8(C-E(endo)) (J(P-C))	\$(CO)	¹ J(C-H) an C(3/5)	³¹ P.NMR
49.8	97.3	108.4	36.9	35.0	24.9	15.0			
(78.2)	(2.6)	(13.6)	(6.4)	-	(22.3)	(63.8)	ı		13
49.8	97.4	108.4	36.9	35.0	24.9	, ,	ı	166	
(28)	(5.2)	(12.5)	(9.9)	(2.2)	(22.1)	I	1		13
49.9	97.6	108.5	36.9	35.0	21.5	18.0 9.2	I		
(78.8)	(4.8)	(12.6)	(7.2)	1	(19.9)	(60.6) (?)	237.2		ដ
48.8	99.3	106.5	37.0	34.8	34.2 7.88	15.4	ł		
(73.9)	(2.6)	(10.4)	(0.7)	(-)	(21.5) (2.7)	(66.3)			17.7
54.8	98.3	106.9	37.5	35.2	im Aromaten-	13.1	I	164	
(1.17)	(5.2)	(11.3)	(6.2)	(1.3)	bereich	(1.77)	I		7
65.7	99.3	105.3	36.6	34.8	~ 53 h	15.9	ł		
(86.9)	(4.8)	(13.6)	(6.4)	(1.7?)	(;)	(101.1)	1		26
49.3	94.9	108.7	34.6	35.0	24.5		I	162.5	
(80.8)	(6.3)	(13.4)	(5.4)	(-)	(11.7)	1	ł		- 37
65.7	98.9	103.9	35.6	34.4	56.4 "	51.3 "	235.2	169.5	
(122.8)	(12.8)	(12)	(3.2)	(-)	(6.4)	(-)			4

H- und 0xy-x -pursphort + $Cr(CO)_6$, o-werte in ppm (11MS als standard bei ² CONTRUME MARK SESSATET. - OTHER CA12 D2-DEFECT. - AUS 2,4,0-1 ID-1-DUIY1-1,1-0LIME1 ¹³ C-NMR, 85% H₃ PO₄ bei ³¹ P-NMR); in Klammern Kopplungskonstanten in Hz. nicht zum Ziel. Wir erhielten jedoch ausser einem noch nicht identifizierten chromatographisch schneller laufenden Nebenprodukt einen roten kristallisierten $Cr(CO)_3$ -Komplex, der aufgrund des Massenspektrums und der ¹H-, ¹³C- und ³¹-P-NMR Tricarbonylchrom-2,4,6-tri-t-butyl-1,2-dimethyl-1,2-dihydrophosphorins **8** ist. (Siehe hierzu die analogen 1-Alkyl-1,2-dihydro-pyridinchromtricarbonyl-Komplexe [15]).

Experimentelles

¹H-NMR: Varian Gerät S-60-T und XL-100-15. ¹³C: Varian XL-100-15 und Bruker W-H-400. ³¹P-NMR: Varian XL-100-15. Positive Werte stets bei niedrigerem Feld als das TMS Signal, bei ³¹P-NMR als das 85proz. H₃PO₄ Signal. Lösungsmittel CD_2Cl_2 bzw. CH_2Cl_2 . IR: Beckman IR 33. MS: Varian CH-7-A, 70 eV. Chromatographie: analytisch an Kieselgel-Dünnschichtkarten mit Fluoreszenzindikator (Riedel de Haen), Säulen mit Kieselgel (Woelm-Eschwege) meist mit $CH_2Cl_2/Petrolether$ (60–80°) 1/1. Alle Operationen wurden unter reinem Argon ausgeführt, die Lösungsmittel sorgfältig getrocknet und über Argon destilliert.

Tricarbonylchrom-2,4,6-triphenyl- λ^3 -phosphorin (3a), nach Lit [1] dargestellt, enthält noch einen chromatographisch nicht abtrennbaren, etwas langsamer laufenden Komplex 3a', der nach dem ¹H-Spektrum noch in einem der Phenylringe an C(2) (bzw. C(6)) mit Tricarbonylchrom komplexiert ist. Bei der Umsetzung des von 3a' verunreinigten 3a mit PhLi und MeI erhält man neben dem Tricarbonylchrom- λ^3 phosphorin-Komplex 5a eine zweite, chromatographisch gut abtrennbare Fraktion mit etwa 10–15% 5a', bei der ausser dem λ^5 -Phosphorinring noch der Phenylring an C(2) durch Tricarbonylchrom komplexiert ist (siehe unten).

Tricarbonylchrom-2,4,6-tri-t-butyl- λ^3 -phosphorin **3b** bildet sich nahezu quantitativ aus 0.5 g 2,4,6-Tri-t-butyl- λ^3 -phosphorin bei 2 stgd. Kochen mit 1 g Cr(CO)₆ in Dibutylether am Rückfluss. Wegen der leichten Löslichkeit in praktisch allen organischen Lösungsmitteln geht bei der Chromatographie über einer kurzen SiO₂-Säule in Benzol und dem Auskristallisieren aus Benzol zum analysenreinen **3b** etwas der Substanz verloren, so dass man meist nur 70% analysenreines **3b** erhält. ¹H-, ¹³C-, ³¹P-NMR sowie IR, MS und UV-Daten sind in Tab. 1 zusammengefasst, C,H-Analyse in Tab. 4.

Allgemeine Vorschrift zur Herstellung der Tricarbonylchrom- λ^5 -phosphorin-Komplexe **5** aus den λ^3 -Phosphorin-Komplexen **3**

1 mmol **3a**, **3a**' oder **3b** werden in etwa 50 ml THF gelöst, mit 1 mmol Lithium-ethyl, -aryl oder fein gepulvertem, trocknem Natriummethylat versetzt und mindestens 2 Std. bei Raumtemp. gerührt. Das Lithiumsalz von **3b** mit MeLi liess sich durch die stark von Lösungsmittel abhängigen ¹H- und ¹³C-NMR-Spektren charakterisieren: ¹H-NMR (C_6D_6/Et_2O): 5.66 ppm ³J(P-H) 3.5 Hz (2H an C(3/5)); 1.58 ppm (18H der CH₃ an t-Bu von C(2/6)); 1.7 ppm (9H der CH₃ an t-Bu von C(4)); 0.82 ppm ²J(P-H) 6 Hz (3H der *exo* CH₃ am P-Atom). ¹³C-NMR ((C_2D_5)₂O): δ 243.1 ppm (CO); δ 108 ppm, ³J(P-C) 2.63 Hz (C(4)); δ 96.95 ppm ²J(P-C) 7.16 Hz (C(3/5)); δ 72.5 ppm, ¹J(P-C) 7.96 Hz (C(2/6)); δ 36.8 ppm, ²J(P-C) 24.3 Hz (quart. C and C(2/6)); δ 35.18 ppm (C quart. an C(4)); δ 33.4 ppm (CH₃ an t-Bu an C(2/6)); δ 32.9 ppm (CH₃ an t-Bu an C(4)); δ 22.25 ppm ¹J(P-C) 34.9 Hz (CH₃ am P); ³¹P-NMR: 59 ppm.

Durch Zugabe von Eisessig zu dem 1-*exo*-Methyl-1-*endo*-Lithium-Komplex aus **3a** erhält man den Phosphonium-Ylid-Komplex **5a** (Nu = Me, E = H), dessen ¹H und ³¹P-NMR-Daten (in CH₂Cl₂) in Tab. 2 angegeben sind (Zu anderen $PR_2H-\overline{C}R_2$ siehe Lit. [16]). Beim Versuch, das ¹³C-Spektrum aufzunehmen zersetzt sich die Substanz. Doch ist die analytische Zusammensetzung der Substanz durch ein hochauflösendes Massenspektrum gesichert. Führt man analoge Reaktion mit dem 1-*exo*-Methyl-1-*endo*-Lithium-Komplex **4b** durch Zugabe von Eisessig durch, erhält man den beständigen Tricarbonylchrom- λ^5 -phosphorin-Ylid-Komplex **5b** (Nu = Me, E = H) dessen ¹H, ¹³C und ³¹P-NMR-Daten unter Nr. 7 in Tab. 3, und dessen C,H-Analyse, CO-Frequenzen und wichtigsten *m/e*-Werte in Tab. 4 aufgeführt sind.

Die übrigen Tricarbonyl-2,4,6-triphenyl-(bzw. -2,4,6-tri-t-butyl)-1,1-disubstituierten λ^5 -Phosphorin-Ylid-Komplexe **5a** bzw. **5b** werden durch Zugabe von MeI bzw. EtI in nahezu quantitativer Ausbeute erhalten. Die Daten der ¹H, ¹³C und ³¹P-NMR-Spektren, der ν (CO)-Frequenzen, Massenspektren und C,H-Analysen sind in den Tab. 2, 3 und 4 zusammengestellt.

Setzt man 3a' mit PhLi und dann mit MeI um, erhält man Tricarbonylchrom(2tricarbonylchrom-phenyl)-1-endo-methyl-1-exo-phenyl-4,6-diphenyl- λ^5 -phosphorin. Die Struktur ergibt sich eindeutig aus der Verschiedenheit der ¹H-NMR-Signale an C(3) (6.64 ppm, ³J(P-H) 18.7 Hz) und an C(5) (6.62 ppm, ³J(P-H) 19.8 Hz), ⁴J(H-H) 1.2 Hz und dem nach höherem Feld verschobenen Signalen des Multipletts der 5H des 2-Tricarbonylchrom-phenyl-Ringes. Die analytische Zusammensetzung wurde durch C,H-Analyse und das Massenspektrum (Tab. 4, 5a) gesichert. Die ν (CO)-Frequenzen sind sehr breit und können nicht im einzelnen der Cr(CO)₃-Gruppen des Phosphorins und des Phenylringes zugerechnet werden.

Deprotonieren des Tricarbonylchrom-2,4,6-tri-t-butyl-1-endo-hydro-1-exo-methyl- λ^5 -phosphorin-Ylid-Komplexes **5b** und erneute Alkylierung

200 mg des oben beschriebenen 1-Hydro-1-methyl-Komplexes **5b** (Nu = Me, E = H) werden in THF mit einem Überschuss an BuLi deprotoniert und dann mit MeI und in einem zweiten Ansatz mit EtI umgesetzt. Man erhällt den Tricarbonylchrom-2,4,6-tri-t-butyl-1,1-dimethyl- bzw. den 1-*endo*-ethyl-1-*exo*-methyl- λ^{5} -phosphorin-Ylid-Komplex in nahezu quantitativer Ausbeute. Ihre ¹H-NMR-Spektren sind mit den nach der allgemeinen Vorschrift aus **3b** mit MeLi und MeI bzw. mit MeLi und EtI hergestellten Verbindungen (Tab. 3, Nr. 1 bzw. 3) identisch. Dies beweist die Konfigurationsstabilität der Li-Verbindungen bzw. der hieraus entstehenden Anionen am Phosphoratom.

Abspaltung der Tricarbonylchrom-Gruppe aus den Ylid-Komplexen 5a und 5b zu den λ^5 -Phosphorinen 6a und 6b

Beispiel einer allgemeinen Vorschrift für die Abspaltung der Tricarbonylchrom-Gruppe aus Tricarbonylchrom-2,4,6-triphenyl-1,1-disubstituierten Ylid-Komplexen 5a zu den λ^5 -Phosphorinen 6a. 500 mg Tricarbonylchrom-1-endo-methyl-1-exophenyl-2,4,6-triphenyl- λ^5 -phosphorin werden in 100 ml Pyridin gelöst und 12 Stdn. mit einer Tageslichtlampe bestrahlt. Nach dem Verdampfen des Lösungsmittels im Vakuum trennt man in Benzol an einer Al₂O₃(neutral)-Säule die vorauslaufende rote Zone ab. Nach Abdampfen des Benzols werden 60 mg (53%) 1-Methyl-1,2,4,6-tetraphenyl- λ^5 -phosphorin, identifiziert durch Schmp., ¹H-NMR und MS, erhalten. Die übrigen Komplexe 5a lassen sich in analoger Weise zu 6a dekomplexieren, doch gelingt dies nicht bei dem 1-Hydro-Komplex.

TABELLE 4

ANALYSEN, IR- 1	UND M	S-SPEKTREN	DER	TRICARBONYLCHROM-X3-PHOSPHORINK	OMP-
LEXE 5a, 5a' UND	5b				

Verbindung	Nu	E	Ausb. (%)	Schmelz- punkt (°C)	Summenformel
Tab.1, 3a	_		20	156–158	C ₂₆ H ₁₇ CrO ₃ P (460.4)
Tab.1, 3b	-		90	135-137	C ₂₀ H ₂₉ CrO ₃ P (400.4)
Tab.2,Nr.1	Ме	Ме	45	276–277	C ₂₈ H ₂₃ CrO ₃ P (490.5)
Tab.2,Nr.2	Me	CD ₃		-	_
Tab.2,Nr.3	Me	Et	30	212-214	C ₂₉ H ₂₅ CrO ₃ P (504.5)
Tab.2,Nr.4	Et	Ме	38	235-237	C ₂₉ H ₂₅ CrO ₃ P (504.5)
Tab.2,Nr.5	Ph	Me	67	262-263	C ₃₅ H ₂₅ CrO ₃ P (552.6)
Tab.2,Nr.6	OMe	Me	36	251-253	C ₂₈ H ₂₃ CrO ₄ P (506.5)
Tab.2,Nr.7	Me	н		-	C ₂₇ H ₂₁ CrO ₃ P (476.9)
Tab.3,Nr.1	Ме	Me	75	über 300	$C_{22}H_{35}CrO_3P$ (430.5)
Tab.3,Nr.2	Me	CD ₃	-	-	-
Tab.3,Nr.3	Me	Et	54	214-216	C ₂₃ H ₃₇ CrO ₃ P (444.5)
Tab.3,Nr.4	Et	Me	76	244–246	C ₂₃ H ₃₇ CrO ₃ P (444.5)
Tab.3,Nr.5	Ph	Me	67	257-258	C ₂₇ H ₃₇ CrO ₃ P (492.6)
Tab.3,Nr.6	OMe	Me	52	223-225	$C_{22}H_{33}CrO_4P$ (446.5)
Tab.3,Nr.7	Ме	н	72	ab 170(Z.)	C ₂₁ H ₃₃ CrO ₃ P (416.5)
Tab.3,Nr.8	OMe	OMe	65	205-207	C ₂₂ H ₃₅ CrO ₅ P (462.5)
5a'	Ph	Ме	13	223-225	C ₃₆ H ₂₅ Cr ₂ O ₆ P (688.6)

Umwandlung des Tricarbonylchrom-2,4,6-tri-t-butyl-1-exo-methyl-1-endo-ethyl- λ^{5} -phosphorin-Komplexes **5b** (Nu = Me, E = Et) in den stereoisomeren 1-exo-ethyl-1-endomethyl-Komplex **5b** (Nu = Et, E = Me)

Zu einer Lösung von 600 mg (1.35 mmol) der zuerst genannten Verbindung **5b** (Nu = Me, E = Et) in 50 ml CH₂Cl₂ gibt man 1.2 ml 70proz. HClO₄ und rührt 30 Min. Nach Abtrennen der HClO₄ rührt man erneut 30 Min mit 2 N NaOH (besser wäre nach der unten gegebenen Vorschrift Natriumhydrid). Man trennt die NaOH-Lösung ab, wäscht mit Wasser, trocknet mit Na₂SO₄, filtriert über eine Umkehrfritte, dampft ein und komplexiert das nicht weiter isolierte 2,4,6-Tri-t-butyl-1-ethyl-1methyl- λ^5 -phosphorin erneut durch 3stdg. Kochen am Rückfluss mit 1.5 g Cr(CO)₆

Berechnet	;	Gefunde	en	IR (cm	⁻¹) in KBr	•	MS m/	e(%)	
С	н	С	н			_			
67.83	3.72	67.75	3.75	1976	1915	1907	460(30)	404(35)	324(100)
59.29	7.30	59.85	7.10	1940	1885	1870	400(9)	401(3)	416(100)
68.56	4.72	68.43	4.75	1930	1850	1825	490(12)	434(27)	406(100)
_ 69.03	- 5.0	68.9	- 5.0	_ 1940	_ 1865		- 504(10)	- 420(100)	-
69 .03	5.0	68.85	5.0	1925	1845	1825	504(14)	448(40)	420(100)
46.65	4.85	-	-	1940	1868	1848	552(12)	496(19)	468(100)
66.40	4.58	65.71	4.65	1945	1868	1840	506(26)	450(54)	422(100)
-	-	-	-	-	-	~	476(6)	392(100)	
61.38	8.20	61.25	8.12	1910	1830	1800	430(25)	346(100)	
-	-	-	-	-	_	_	-	-	
62.14	8.39	61.7	8.30	1920	1830	1810	444(19)	360(100)	
62.14	8.39	62.35	8.53	1915	1840	1810	444(15)	360(100)	
65.83	7.57	66.02	7.52	1 91 0	1830	1810	492(13)	436(12)	408(100)
59.17	7.90	59.18	7.90	1930	1840	1812	390(17)	362(100)	
60.56	7.98	60.72	8.06	1935	1860	1840	416(20)	332(100)	
57.12	7.62	57.36	7.79	1935	1860	1825	462(12)	406(10)	378(100)
62.79	3.66	62.73	3.73	1960 bi	s 1820		688(7)	604(18)	468(100)

in 50 ml Di-n-butylether. Nach dem Abdampfen des Lösungsmittel im Vakuum und Chromatographieren über einer kurzen SiO₂-Säule der mit CH₂Cl₂ aufgenommenen Lösung erhält man nach dem Abdampfen des Lösungsmittels und Umkristallisieren aus n-Hexan 260 mg (43% Ausb.) des isomeren Tricarbonylchrom-2,4,6-tri-t-butyl-1exo-ethyl-1-endo-methyl- λ^5 -phosphorin-ylid-Komplexes, identisch mit der aus Tricarbonylchrom-2,4,6-tri-t-butyl- λ^3 -phosphorin mit EtLi und MeI bereiteten Verbindung.

600 mg Tricarbonylchrom-2,4,6-tri-t-butyl-1,1-dimethyl- λ^5 -phosphorin (**5b**, Nu = E = Me) werden in 50 ml CH₂Cl₂ gelöst, mit 2 ml 70proz. HClO₄ versetzt und 30 Min. stark gerührt. Dann trennt man die Perchlorsäureschicht ab, wäscht mehrmals mit gesättigter Na₂CO₃-Lösung und Wasser, dampft aus der CH₂Cl₂-Phase das Lösungsmittel ab und kristallisiert aus Benzol: 400 mg (70% Ausb.) von 2,4,6-Tri-t-

butyl-1,1-dimethyl-1,6-dihydrophosphorinium-perchlorat: ¹H-NMR (CD₂Cl₂): δ 6.93 ppm (1H), ³J(P-H) 34.1 Hz, (H an C(3)); δ 6.02 ppm (1H), ³J(P-H) 21 Hz, ³J(H-H) 7.21 Hz. (H an C(5)); δ 3.06 ppm (1H), ²J(P-H) 13.75 Hz; ³J(H-H) 7.21 Hz (H an C(6)); δ 2.41 ppm (3H), ²J(P-H) 13.9 Hz (CH₃ am P); δ 1.88 ppm (3H), ²J(P-H) 12.9 Hz (CH₃ am P); δ 1.30 ppm (9H) (CH₃ an t-Bu von C(2)); δ 1.13 ppm (9H) (CH₃ an t-Bu an C(6)); ³¹P-NMR: +15.25 ppm.

Zur Deprotonierung zum 2,4,6-Tri-t-butyl-1,1- λ^5 -phosphorin eignet sich am besten Natriumhydrid

400 mg des vorstehenden Perchlorates in 50 ml THF werden mit 33 mg NaH (in 80 proz. Paraffinöl) 30 Min. gerührt. Danach wird das Lösungsmittel im Vakuum abgedampft, der Rückstand in absol. n-Hexan aufgenommen, über eine Umkehrfritte unter Luftausschluss filtriert. Nach dem Abdampfen des Lösungsmittels: etwa 200 mg gelbe Kristallnadeln (etwa 40% Ausb.), sehr luftempfindlich, so dass die analytische Zusammensetzung nicht durch eine C,H-Analyse und nur durch ein hochauflösendes Massenspektrum ermittelt werden konnte: MS ber.: 294, 2476, gef.: 294, 2467. ¹H-NMR (CD₂Cl₂): δ 7.01 ppm (2H), ³J(P-H) 30.9 Hz (H an C(3/5)); δ 1.82 ppm (6H) ²J(P-H) 11.7 Hz (H an P-CH₃); δ 1.33 ppm (18H) (H an CH₃ von t-Bu an C(2/6)); δ 1.12 (9H) (H an CH₃ von t-Bu an C(4)); ¹³C-NMR (CD₂Cl₂): δ 133.9 ppm ²J(P-C) 6.46 Hz; ¹J(C-H) 143.74 Hz (C(3/5)); δ 133.06 ppm ³J(P-C) 12.96 Hz (C(4)); δ 85.27 ppm, ¹J(P-C) 89.53 Hz (C(2/6)); δ 37.25 ppm (C-quart. an C(2/6)); δ 36.86 ppm (C-quart. an C(4)); δ 34.11 ppm, ³J(P-C) 3.7 Hz (CH₃ an t-Bu an C(2/6)); δ 32.49 ppm (CH₃ an t-Bu an C(4)); δ 27.04 ppm, ¹J(P-C) 49.55 Hz (CH₃ am P-Atom). ³¹P-NMR (CH₂Cl₂): -8.5 ppm.

2,4,6-Tri-t-butyl-1,2-dimethyl-1,2-dihydrophosphorin

790 mg 2,4,6-Tri-t-butyl- λ^3 -phosphorin werden mit 3.3 mmol MeLi in 80 ml THF 30 Min. gerührt und dann mit 2 ml MeI versetzt. Nach 30 Min. Rühren dampft man ein und trennt an einer SiO₂-Säule. Man erhält 350 mg Ausgangsmaterials zurück, was darauf zurückzuführen ist, dass die Addition von MeLi zu früh abgebrochen wurde. Die 2. Zone (300 mg) besteht aus 2,4,6-Tri-t-butyl-1,2-dimethyl-dihydrophosphorin.

Zur Komplexbildung mit $Cr(CO)_6$ werden 300 mg der vorstehenden Verbindung mit 1 g $Cr(CO)_6$ in 50 ml Dibutylether 36 Stdn. am Rückfluss gekocht. Nach Verdampfen des Lösungsmittels und Chromatographie über SiO₂ in Benzol/Hexan erhält man 80 mg rote Kristalle vom Schmp. 165–167°C. Es handelt sich um den $Cr(CO)_3$ -Komplex des 2,4,6-Tri-t-butyl-1,2-dimethyl-1,2-dihydrophosphorins, leicht verunreinigt durch Spuren Chrom. Gef.: C, 59.95; H, 7.94. $C_{22}H_{35}CrO_3P$ (430.53) ber.: C, 61.38; H, 8.20%. ¹H-NMR (CD₂Cl₂): δ 6.06 ppm (1H) ³J(P–H) 24.75 Hz (H an C(5)); δ 3.48 ppm (1H) ³J(P–H) 24.9 Hz (H an C(3)); δ 1.9 ppm (3H) ²J(P–H) 12.2 Hz (H von CH₃ am P); δ 1.74 ppm (3H) ³J(P–H) 21 Hz (H an CH₃ an C(2)); δ 1.3 ppm (9H) (H an CH₃ an t-Bu); δ 1.27 ppm (9H) (H an CH₃ an t-Bu), 0.74 ppm (9H) (H an CH₃ an t-Bu an C(2)). ³¹P-NMR (CH₂Cl₂): δ + 4.27 ppm, MS = 430 (100%),

Dank

Dem Fonds der Chemischen Industrie und der Badischen Anilin- und Sodafabrik, Ludwigshafen, und der Deutschen Forschungsgemeinschaft sind wir zu grossem Dank für die finanzielle Unterstützung unserer Arbeiten verpflichtet. Für ihre Hilfe bei der Aufnahme der NMR-Spektren danken wir Herrn Doz. Dr. St. Berger, der MS-Spektren Herrn Dr. K. Steinbach.

Literatur

- 1 J. Deberitz und H. Nöth, Chem. Ber., 103 (1970) 2541; J. Organometal. Chem., 49 (1973) 453.
- 2 H. Vahrenkamp und H. Nöth, Chem. Ber., 105 (1972) 1148.
- 3 J. Deberitz und H. Nöth, J. Organometal. Chem., 61 (1973) 271.
- 4 J. Deberitz und H. Nöth, J. Organometal. Chem., 55 (1973) 153.
- 5 M. Lückoff und K. Dimroth, Angew. Chem., 88 (1976) 543; Angew. Chem. Int. Ed. Engl., 15 (1976) 503; K. Dimroth, M. Lückoff und H. Kaletsch, Phosphorus and Sulfur, 10 (1981) 285.
- 6 K. Dimroth, S. Berger und H. Kaletsch, Phosphorus and Sulfur, 10 (1981) 295; 305.
- 7 K. Dimroth und H. Kaletsch, Angew. Chem., 93 (1981) 898; Angew. Chem. Int. Ed. Engl., 20 (1981) 871.
- 8 T. Debaerdemaker, Acta Crystallogr. B, 35 (1979) 1686; T. Debaerdemaker, Chrystallogr. Struct. Commun., im Druck.
- 9 G. Jaouen in H. Alber (Ed.), Transition Metal Organometallics in Organic Synthesis Vol. 2, p. 65, Academic Press Inc., New York, 1978; M.F. Semmelhack, H.T. Hall Jr., R. Farina, M. Yoshifuji, G. Clark, T. Bargar, K. Hirotsu and J. Clardy, J. Am. Chem. Soc., 101 (1979) 3535.
- 10 M.F. Semmelhack und G. Clark, J. Am. Chem. Soc., 99 (1977) 1675.
- 11 K. Dimroth und W. Mach, Angew. Chem., 80 (1968) 489; Angew. Chem. Int. Engl., 7 (1968) 460.
- G. Märkl, F. Lieb und A. Merz, Angew. Chem., 79 (1967) 59; Angew. Chem. Int. Ed. Engl., 6 (1967) 87.
- 13 K. Dimroth und W. Städe, Angew. Chem., 80 (1968) 966; Angew. Chem. Int. Ed. Engl., 7 (1968) 881.
- 14 Literaturangaben z.B. in J.C. Boutonnet, L. Mordenti, E. Rose, O. Le Martret und G. Precigoux, J. Organometal. Chem., 221 (1981) 147.
- 15 E.O. Fischer und K. Öfele, J. Organometal. Chem., 8 (1967) P5, dort weitere Literatur.
- 16 O.I. Kolodiazhnyi, Tetrahedron Lett., 21 (1980) 2269.